Costs and Cost-effectiveness of LLIN distribution strategies in sub-Saharan Africa

Joshua Yukich 1 Janna Wisniewski 1 Sara Scates 1 Olivier Briët 2 Angela Acosta 3 Hannah Koenker 3

1Tulane University School of Public Health and Tropical Medicine
2Swiss Tropical and Public Health Institute and the University of Basel
3Johns Hopkins Center for Communication Programs

February 6, 2018
Introduction

2015 MAP Estimates of ITN Coverage and Continental-level time series of estimated ITN coverage indicators for the years 2000–2013. (A) % HH one ITN; (B) % HH 1 per 2; (C) % pop. access; (D) % pop. slept; (E) 'ownership gap'. Source: MAP and Bhatt et al 2015.

- Successful scale up in coverage since 2000
- Heterogeneity
- Imperfect coverage
- Sustainability of coverage

- Sawtooth coverage over time
- What are the implications of gaps
- What will it cost to fill them
Costs and Cost-effectiveness of LLIN distribution strategies in sub-Saharan Africa

Intro
Costing case-series
Meta-analysis and review
Effectiveness
Cost-effectiveness
Conc.

Overall Study Design

1. Case series of costing for CD strategies
 - Schools
 1. Tanzania
 2. Ghana
 - ANC/EPI
 1. Ghana
 2. Tanzania
 3. Mali (+ 2 regional Mass campaigns)
 - Community
 1. Zanzibar

2. Review and meta-analysis of existing data (plus new data)

3. Simulation of effects using OpenMalaria

4. Cost-effectiveness comparisons
Costs and Cost-effectiveness of LLIN distribution strategies in sub-Saharan Africa

Intro
Costing case-series
Meta-analysis and review
Effectiveness
Cost-effectiveness
Conc.

Costing case-series results

Total and Distribution Costs

- **International Donor Distribution Costs**
 varied - some CD systems higher and some lower than campaigns
 LLINs still largest line item

- **Annual Economic Cost per TNY**
 Donor + country contribution generally higher in CD
 Country contributions much higher in CD
Review and Meta-analysis methods

- MeSH search terms used were (malaria OR falciparum OR plasmodium) AND (cost OR effective OR effectiveness OR benefit)
- Abstracts reviewed for the potential to contain primary cost data
- Reference lists of identified studies reviewed and experts consulted
Costs and Cost-effectiveness of LLIN distribution strategies in sub-Saharan Africa

Intro
Costing case-series
Meta-analysis and review
Effectiveness
Cost-effectiveness
Conc.

- Two existing (relatively) recent reviews - Eisele et al 2012 and White et al 2011 (One Older - Kolaczinski and Hanson 2006)
- Different methods and different inclusion criteria

Step 1: Database* keyword search
- MeSH search terms: (malaria OR falciparum OR plasmodium) AND (cost OR effective OR effectiveness OR benefit)
- Publication date: January 1, 2010- May 31, 2017
n=5,629 articles fit criteria

Step 2: Search of reference lists of all articles selected in Step 1.
- n=7 articles screened

All articles, dissertations, and grey literature containing primary cost data related to insecticide-treated nets published between January 1, 2010 and May 31, 2017 were selected.
- n=13

Studies included in White (2011) or Eisele (2012) were excluded.
- n=1

Cost only studies
- n=7
Cost effectiveness only studies
- n=1
Cost and cost effectiveness studies
- n=4

Step 3: Internet search and request for unpublished reports from malaria researchers.
- n=X articles screened

*PubMed; Google Scholar; African Journals Online, Social Science Research Network, Bath Information and Data Services (BIDS)
Costs and Cost-effectiveness of LLIN distribution strategies in sub-Saharan Africa

Intro

Costing case-series

Meta-analysis and review

Effectiveness

Cost-effectiveness

Conc.

Review and Meta-analysis results - Costs of delivery

Cost of Delivery (Economic)

<table>
<thead>
<tr>
<th>Delivery Method</th>
<th>Cost of Delivery (USD)</th>
<th>(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>3.21 (USD)</td>
<td>2.55-3.86</td>
</tr>
<tr>
<td>Cam.</td>
<td>2.34 (USD)</td>
<td>1.63-3.04</td>
</tr>
</tbody>
</table>

- $N = 39$
- $p = 0.08$ for difference
- Financial costs - Region, Year and CD vs. Campaign delivery all significant sources of heterogeneity.

Cost of Delivery (Financial)

<table>
<thead>
<tr>
<th>Delivery Method</th>
<th>Cost of Delivery (USD)</th>
<th>(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>2.97 (USD)</td>
<td>1.91-4.04</td>
</tr>
<tr>
<td>Cam.</td>
<td>2.02 (USD)</td>
<td>1.10-2.95</td>
</tr>
</tbody>
</table>

- $N = 62$
- $p = 0.173$ for difference
- Econ. costs - no significant predictors were found.
Baseline Scenarios

- Vector biology, demographics, seasonality, treatment seeking: as per Briët and Penny 2013
- Variants: 7
- EIR: 1, 2, 4, 8, 16, 32, 64
- Three baseline scenarios - 100 Year equilibration, 15 years baseline monitoring, then interventions with 30 years of monitoring:
 1. No intervention
 2. Three mass distributions at five year intervals
 3. Five mass distributions at three year intervals

Figure: Population use of LLIN resulting from distribution scenario 1. Black: baseline scenario 1; Red: baseline scenario 2; Blue: baseline scenario 3
Population use of LLIN resulting from distribution scenarios

Figure: UC Mass campaign every 5 years

Figure: Single UC Mass campaign followed by ANC/EPI + schools

Figure: Single UC Mass campaign followed by schools only

Figure: UC Mass campaign every 5 years + ANC/EPI + small schools in non-campaign years
Intervention Scenarios

1. A) NO LLINs (any distributions ceases)
2. B) Single UC Mass campaign followed by ANC/EPI only
3. C) Single UC Mass campaign followed by ANC/EPI + community
4. D) Single UC Mass campaign followed by ANC/EPI + schools
5. E) Single UC Mass campaign followed by community only
6. F) Single UC Mass campaign followed by schools only
7. G) UC Mass campaign every 3 years
8. H) UC Mass campaign every 3 years + ANC/EPI
9. I) UC Mass campaign every 3 years + ANC/EPI + small schools in non-campaign years
10. J) UC Mass campaign every 5 years
11. K) UC Mass campaign every 5 years + ANC/EPI
12. L) UC Mass campaign every 5 years + ANC/EPI + small schools in non-campaign years
Cost-effectiveness methods

- Cost-effectiveness frontier estimated using plot method to show expansion path.

Image source: Hassmiller Lich et al Prev Chronic Dis 2017
Example above is base model and baseline is 5 UCC over fifteen year period.

- Nets cost similar amounts but delivery more expensive through CD systems.
- Costs discounted at 3% to Present Value.

Expansion path depends on transmission context (and what has already been done).
Conclusions

- Current information indicates that CD strategies can be effective at delivering nets/sustaining coverage.
- Cost of CD systems (per net) not statistically significantly higher than campaigns in review despite higher mean (high variability).
- CD involves more country resources than campaigns.
- CD systems in many cases are competitive in terms of ICER to campaign only approach.
- Distribution of costs within programs has not changed drastically over time (LLIN still biggest cost driver).
- Expansion path (intervention choice as budget expands) in most cases is:

\[
\text{NONE} \Rightarrow UCC + ANC \Rightarrow (UCC + SCHOOL \parallel COMM) \parallel UCC3 \\
\Rightarrow UCC + ANC + SCHOOL \parallel COMM
\]
Acknowledgments

- ZAMEP
- Tanzania NMCP
- Ghana NMCP
- PSI/Mali
- Swiss TPH
- VectorWorks
- PMI TZ

- JSI/DELIVER
- PMI Mali
- Mali PNLP
- Communicate for Health Ghana
- Peace Corps Ghana
- PSI/Tanzania
- PMI Ghana