Decentralized Entomological Surveillance : Community-based Approach

Chadwick H. Sikaala
Background

- Monitoring mosquito population dynamics to guide selection and evaluation of malaria vector control interventions
- Typically implemented by highly qualified, centrally-based experts
- *Piloted district based surveillance in 18 sentinel sites*
- Limitations in costs, timely visitations and frequency of implementation
- Community-based (CB) mosquito trapping schemes could complement efforts
Approach /Methodology

• **A longitudinal Community – Based (CB) surveillance scheme**
 • Monthly sampling and reporting cycle
 • Centers for Disease Control and Prevention light traps (LT) and Ifakara Tent Traps (ITT),
 • Trained Community health workers (CHW) within health facilities

• **CHWs were trained**
 • Basic operation of traps,
 • Basic sampling procedures
 • Morphological identification of mosquitoes
 • Storage, labelling and data entry in simplified form

• **Quality assurance (QA) by central team to evaluate accuracy**
 • Used Human Landing Catches (HLC), LTs and ITT

• **Cost implication of the CB surveillance scheme**

• **Epidemiological relevance of CB through active surveillance of malaria parasite**
Nyimba/Luangwa: 14 clusters, 1000/cluster

3 CHWs/cluster

CHW #1

CHW #2

CHW #3

60 HH ea

45 HH

15 HH

Epidemiological Survey (CHWs)

Entomological Survey (CHWs)

Active: Monthly finger stick blood samples

Passive

RDT +ve → treated (~20% were positive)

Entomological training

- use of trap (CDC-LT, ITT)
- Sort mosquitoes by eye (Genus)
- Storage (silica) / Dessication
- Simple recording (Anopheles/Culex)

Collections

- 1 night/month (299 HH) (1900-0700)
- Collection night was set per house
 - Indoor LT (at foot of sleeping space)
 - Outdoor ITT (5m)

Monthly collection by NMCP team

- Morphological / molecular identification
- ELISA

Luangwa: January 2011 – April 2013
Nyimba: April 2011 – April 2013
Table 2: Crude estimates of the costs per sampling scheme per trap-night and per *Anopheles funestus* caught for the three months when community-based sampling was validated with quality assured sampling schemes

Estimated parameter	Units	Quality assured		Community-based		
Number of samples	Person-night	QA-HLC	QA-LT	QA-ITT	CB-LT	CB-ITT
Numbers Caught	Number of *Anopheles funestus*	526	41	32	637	156
Mean Caught	Number of *Anopheles funestus* per person-night	13.2	2.1	1.6	2.6	0.6
Personal costs a	(ZMW)	2,180(11,401.4)	1,520(7,949.6)	1,076(5,627.5)	2509.4(13,124.2)	2,939.4(15,373.1)
Per diem costs b	(ZMW)	414(2,165.2)	1,243(6,500.9)	1,243(6,500.9)	621(3,247.8)	621(3,247.8)
Trap depreciation costs	(ZMW)	0(0)	87.5(457.6)	125(653.8)	87.5(457.6)	125(653.8)
Transport costs c	(ZMW)	225(1,176.8)	225(1,176.8)	225(1,176.8)	0(0)	0(0)
Vehicle maintenance costs d	(ZMW)	212(1,108.8)	211(1,108.8)	212(1,108.8)	71(371.3)	71(371.3)
Vehicle depreciation cost e	(ZMW)	2,500(13,075)	2,500(13,075)	2,500(13,075)	0(0)	0(0)
Bicycle repair costs c	(ZMW)	0(0)	0(0)	0(0)	94(491.6)	611(3,195.5)
Bicycle depreciation costs d	(ZMW)	0(0)	0(0)	0(0)	0(0)	5(26.2)
Total expenditure	(ZMW)	5,531(28,927.1)	5,788(30,268.6)	5,381(28,142.6)	3,388(17,718.7)	4,372(22,867.7)
Cost per person-night of sampling	(ZMW)	138.3(723.2)	289.4(1,513.4)	269.1(1,407.1)	13.6(71.2)	18.0(94.1)
Cost per specimen of *An. funestus* caught	(ZMW)	10.5(55)	141.2(738.3)	168.2(879.5)	5.3(27.8)	28.0(146.6)

a Cost estimates were based on the approximated time and efforts spent on each trapping method
b Assumptions made on the salaries paid and per diem to the central level teams during their visits
c Estimated cost incurred for maintaining the equipment for transporting or visiting the trapping schemes per location
d Monthly depreciation costs calculated when both trapping schemes were operational for three months

$ - US dollar
ZWK - Zambian Kwacha
Note: 1$ ≈ ZMK 5.23 which was the average exchange during the midpoint year of 2012

Quality Assurance

- ITT / CDC-LT / HLC (in /out)
- Experienced CHWs (Chisobe, Luangwa)
- Same HH visited 2 days earlier
 - Day 1: House 1: in/out HLC ; House 2: ITT/CDC-LT
 - Day 2: House 2: in/out HLC ; House 1: ITT/CDC-LT
- All clusters (but 1)
- Feb-April 2013 (last 3 months of study)
Challenges

• Training of CHWs required
 – CHWs conducted less catches when there were fewer mosquitoes (value of 0)
 – Re-training may be needed
• Communication (illness / reliability / resignation)
• Lower CB efficacy in trapping mosquitoes
 – QA needed to validate accuracy and identify limitations (quantify) – prerequisite to interpretations
Concluding Points

- Community engagement & ownership
- Practical and cost effective for routine entomological surveillance
- Higher frequency, captures temporal trends with far greater resolution
- Epidemiologically relevant
- The QA validation exercise was short (three months)
- None continuous, none randomized
- Evaluation and Constant refresher trainings

Temporal variations of *Anopheles funestus* mean catches by light traps and the malaria diagnostic positivity among human residents from January to September 2011 in 2 districts

Different models with different assumptions

- Different approaches adopted in sentinel sites
 - Communities engaged differently
 - Partnership and resource consideration

- Central level - Oversight, Insecticide resistance, molecular analysis and quality assurance strengthening

- Optimization to national level scales for sustainability

Model 1: CHWs limited to trap placement, health facility (district) level overseer & enter all data
Model 2: CHWs trap placement, initial data entry health facility (district) level verify
Acknowledgements

• NMCP, Zambia:
 – Dingani Chinula
 – Javan Chanda
 – Busiku Hamainza
 – Mulenga Mwenda
 – Isabel Mukali
 – Mulakwa Kamuliwo

• Aklilu Seyoum
• Gerry Killeen
• Neil Lobo
• Luangwa & Nyimba DHOs
• CHWs
• B&MGF (MTC)

Sikaala et al. Malaria Journal 2014, 13:225
A cost-effective, community-based, mosquito trapping scheme that captures spatial and temporal heterogeneities of malaria transmission in rural Zambia
Thank you!